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Ray Equations — Hamilton/Haselgrove formulation

dx; » dp; 1 8,u
du l du 2 Ox; (p,x)
where x;, i =1, 2, 3 is the coordinate of
a point on the ray
p;, i=1,2,31is a vector in the wave
normal direction with magnitude u.
M 1s the refractive index
dP
The phase path, P, given by — =

du

u is a parameter that varies monotonically along the ray path.

Usually u=P’, the group path.

main ray

Consider a ray tube

: .. 0,p,0
Rays adjacent to original ray can (0,p,0,x 01p,90;1x)
be considered perturbations of the p, x)
original main ray.

Using Hamilton’s variational approach
can show that

(5ﬁx) 5/}1’: TP ox, /uz
d 1 0%y’ 1 op® op?
(ﬂ 1) 28xi6xj pri = Pi 2,uz o, ox, P

du

Power (ray divergence) at any point along ray
is proportional to (J,x X J,x)
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Ray tracing Simulation Of a 3501 JIonospheric Model based on IRI
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In normal SuperDARN operations a frequency at which
significant scatter is occurring is automatically selected.

During Spring 2000 most common frequencies selected by
TIGER were in the band 11.0 — 12.5 MHz.

How do characteristics of sea scatter and ionospheric
scatter observed at these frequencies compare with those
predicted by IRI?

IRI predictions based on 12 MHz
Tilted Dipole used to describe magnetic field

Sea echoes observed by TIGER during Spring of 2000
Percentage occurrence along Beam 4 for 11-12.5 MHz
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Sea echoes observed by TIGER during Spring of 2000
Percentage occurrence along Beam 4 for 11-12.5 MHz
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Simulation using International Reference Ionosphere (IRI)

Relative Echo Strength at 12 MHz
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Ionospheric Scatter:
can occur at normal incidence to field lines
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Ionospheric Scatter
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Refractive Index at Scatter points
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Effect of Background Ionosphere on Doppler Shift _p

B B
Pzi,ucosa ds B VB
dP  Bdu 5
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dt 40t p ]A op

ot
f dP
Af =L
/ c dt

If time variation of phase path due only to reflection/scatter point
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Conclusions

For period considered (Spring 2000):

A. Sea-Scatter

= Location of daytime sea scatter predicted by IRI

= Echo power variations similar to IRI variations in ionospheric
focussing

= Night-time echoes identified as sea-scatter not predicted by IRI

B. Ionospheric Scatter

» Jonospheric scatter occurs largely in regions where IRI predicts
0.5 and 1.5 hop scatter

= Night-time echoes identified as sea-scatter also occur where
IRI predicts 0.5 hop scatter

= Scatter occurs in regions where ¢ > 0.9, so scatter irregularity
wavelength no greater than 10% larger than free space half-
wavelength (12.5 m) and irregularity velocity no greater than
10% larger than “free space” value.
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