

The possible role of ion-neutral slip velocity in the formation of decametre-scale irregularities in the high-latitude ionosphere

M. L. Parkinson¹, J. C. Devlin², and P. L. Dyson¹

(1) Department of Physics, La Trobe University, Melbourne, Victoria 3086, Australia

(2) Department of Electronic Engineering, La Trobe University, Victoria 3086

Basic Mechanics of the E×B Instability:

Fig. 21. Simplified schematic diagram showing the basic mechanics of the $\vec{E} \times \vec{B}$ instability. A Pedersen ion drift (to the right) leads to charge separation and the development of polarization electric fields, \vec{E}_p . The sense of \vec{E}_p is to drive $\vec{E}_p \times \vec{B}$ motion that further enhances the original plasma perturbation.

Roland T. Tsunoda, "High-Latitude F Region Irregularities: A Review and Synthesis," Rev. Geophys., 26, 719-760, 1988

Basic Mechanics of the E×B Instability:

The simplest, one-dimensional, linear growth rate, γ_0 , for the $E \times B$ instability with $k \cdot B = 0$, kL >>1 is

$$\gamma_0 = V_0 / L, \qquad \omega << v_{in}$$

where

 $V_0 = V - U$, the "slip" velocity, the plasma drift, V, relative to the neutral wind U, $L = [(1/n_e)(dn_e/dx)]^{-1}$, the gradient scale length, $\omega = \omega_r + i \gamma_0$, the wave frequency $(e^{-i\omega} = e^{-i\omega_r}e^{\gamma})$, $k = 1/\lambda$, the irregularity wave number, $v_{in} =$ the ion-neutral collision frequency, $n_e =$ the plasma density.

Chatanika Incoherent Scatter Radar (147.4°W, 65.1°N, 58.4°Λ)

Roland T. Tsunoda, "High-Latitude F Region Irregularities: A Review and Synthesis," Rev. Geophys., 26, 719-760, 1988

TIGER I & II Field of Views:

TIGER Tasmania Range-Time Plot, 10 December, 1999

TIGER Tasmania Ionospheric Scatter, 13:22:57 UT, 10 December, 1999 1999/12/10/13:22:57. (Tas) Power Tiaer -150. * Brisbane ¥∕Sydney ₩elboµrne Power (dB) 40 **₩**Hobart Westward "Rotating" Power 30 **Enhancements** 3MOI 20 1D *Sth Dip Pole ¥ Cašey n

TIGER Echo Occurrence, December 1999 to November, 2000

TIGER Echo Occurrence, December 1999 to November, 2000

TIGER Average FITACF Backscatter Power, December 1999 to November, 2000

Summary:

- TIGER is ideally located to observe the formation of intense ionospheric irregularities just poleward of the nightside Open-Closed magnetic field line Boundary (OCB):
 - (1) Traces of enhanced backscatter power tend to commence just poleward of the *OCB* where $E \times B$ velocity transients occur frequently.
 - (2) Statistics show more echoes with SNR >3 dB tend to be observed post-midnight on all beams of TIGER.
 - (3) Without question, on average the backscatter powers are greatest post-midnight.
- The important role of ionospheric "slip velocity" in gradient drift instability theory is consistent with stronger F-region irregularities observed by TIGER post-midnight.
- What other theories are consistent with these important TIGER observations?